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1 Introduction

In this short paper we outline a unifying framework for coxveultilinear estimation, based on our
recent work [15], and sketch a kernel extension to tenseedanodeling in line with [14].

Traditional tensor-based approaches often translateh#tlenging non-convex optimization prob-
lems that suffer from local minima. As a first contribution e@nsider in the next Section a general
class of non-smooth convex optimization problems wherecéeiannorm for tensors [9] is employed
as a penalty function to enforce parsimonious solutionssipervised learning the proposed frame-
work allows to extend the penalized empirical risk minintiza used in machine learning to develop
structured (tensor-based) models. On the other hand pnshike tensor completion and tensor de-
noising — that can be seen as unsupervised tasks — also arggeaial instances of the general
class of optimization problems that we consider. A commaguo@hm is developed to deal with
these different cases. The approach builds upon existinbadse for convex separable problems
[10] and distributed convex optimization [5]. Furthermbeing essentially a first-order scheme in
the tensor unknown, the strategy we pursue can be accelétasezhieve the optimal rate of con-
vergence in the sense of Nesterov [11]. From a methodolbg@érapective extending the nuclear
norm — and, more generally, the class of Shatten norms — fr@amices to tensors [15] poses
new interesting questions. For second order tensors a knesuit shows that the nuclear norm is
the convex envelope of the rank function. For the gendfrath order case answering whether the
convex relaxation obtained with the new penalty is tighthwigspect to related rank-constrained
formulations is an important question that goes beyond mmeathematical interest. In fact, a bet-
ter understanding of these aspects might lead to more aectwavex heuristics for non-convex
tensor-based problems.

Beyond non-convexity an important drawback of traditiclealsor-based techniques consists of the
linearity of models with respect to the data, a fact thatroftanslates into limited discriminative
power. By contrast, in the last two decades kernel modelgsorto be very accurate thanks to their
flexibility. In Section 3 we sketch a possible approach teedtthe classical tensor-based framework
[14] and highlight the difference with seemingly similaeas [17]. Whereas application of kernel
methods would normally prescribe to flatten the various disiens first, our proposal consists of
mapping tensors based upon the SVD decomposition (andragtier versions thereof [6]) so that
the structural information embodied in the original represtion is retained.



In the following we denote scalars by lower-case letters,(c, . . .), vectors as capitals{; B, C, . . .)
and matrices as bold-face capitald,B,C,...). Tensors are written as calligraphic letters
(A, B,C,...). We write a; to mean thei—th entry of a vectorA. We frequently usé, j in the
meaning of indices and with some abuse of notation we will Lisé to denote the index upper
bounds. We further denote sets (and spaces) by Gothicsétet3, ¢, . . .). Finally we often write
N; to denote the seftl, ..., I'}.

2 Multilinear Estimation with Nuclear Norm Penalties

Recent research in statistics and machine learning [18fsfet on composite norms. Regularization
via composite norms allows one to convey specific structan@diori information about the model
to be estimated. Let € R* ® R”2 @ --- @ R/~ denote a generic tensor. Consider the function:

1
9(X) = N Z [ X<n>1l«

neNy

where-.,,~ denotes thes—th unfolding operator and - ||.. is the nuclear norm for matrices. It
can be shown thag is a well defined norm — that by extension can be cattedear — and
hence we writd| X'||. := g(X’). Furthermore such a norm represents an instance of a moeeagen
class that extends the concept of Shatten norms from matiachigher order tensors [15]. Let
AR @RE2®. ... RIN - RPr @ RP2 @ -.. ® RP™ be some linear map and assutfiec
R @ RP2 @ - @ RPM | In here we deal with the equality constrained optimizafiosblem:

X = arg min F(X) + pl| X[ (1)
XeRN@RI2®--QRIN
subject to A(X) = Z @)

aimed at finding a compaciV —order tensor-modet’ based upon an application-dependent convex
and smooth functiorf and a finite trade-off parametgr > 0. Algorithmically a solution of the
unconstrained problem corresponding to (1) can be foundelogigating a sequence of convex and
separable proximal problems [15] each of which can be soligethe Alternating Direction Method
of Multipliers [5]. On the other hand a simple approach tolddgth the linear constraint (2) is by
means of a penalty method [2]. Interestingly the approaclprepose is essentially a first order
scheme in the tensor unknown. Hence its convergence speée @aproved relying on the concept
of estimating sequences that underlies many recent proposalsfoand nuclear norm optimization
[3],[16]. More details on the proposed strategy can be fanrjd5]. Here we only remark that the
formulation in (1)-(2) can be used to tackle a broad classsig: different specifications gfgive
rise to different estimation problems both supervised amiipervised. Examples follow.

2.1 Penalized Empirical Risk Minimization

Suppose we are givei input-output pairs{ (y;, Z¥) e Y x Rh @ R2 @ - -- ®R1N}k€NK
where2) denotes the output set. Given a conlass function : ) x R — R™ the unconstrained
optimization problem associated to (1) can be used for sigest learning as soon as we take

1) =31 (g (20, 7)) . ®)
1€ENg
This corresponds to extending thenalized empirical risk minimization approach used in machine
learning to the case where the generic input pattern is septed as a tensé and the prediction
is performed via the linear functiof€, X’). This is useful in a number of applications such as, for
instance, classification of human action from surveillarideos or quality assessment of batches in
chemometrics.

2.2 Tensor Denoising and Completion

Suppose we want to recover a low-rank tendbre R”* @ R’z @ --- @ R/~ such thatA(X) is
close or even coincide to an observ&de Rt @ RP2 @ --- @ RPM. In the simplest situation

"Herecompact means with small multilinear ranks, see [15].



Z e R @ R2 ® ... @ RIV is a given noisy tensor observation and we are interestegtvering
its latent versionY’, assumed to be compact. In this case we let

fFX) =X - 2|3

where|| - ||, denotes some smooth norm, such as the Frobenius norm. Thiaiohin (2) can be

used to further impose strong prior information oxeor a transformation thereof(X’). A popular

case (well-studied for second-order tensors) is foundHfercase whereA(X)); = ;... and
N

Z € R’ is a vector of measurements corresponding to a subset edewiith indices in
0= {(i{,...,i%)ENh Xoeee XN[N ZjENJ} .

In the limit case of tensor completion [9] we taKe= 0. More details as well as concrete examples
can be found in [15].

3 Beyond Linearity: Operatorial Representations

The core idea of kernel methods [13] consists of mappingtippints represented as vectors (first
ordertensors) Z(*)},cn,. C RP into a feature space of sequences (well behaved infirfigimen-
sional vectors) by means offeature map ¢ : R? — [,. Standard algorithms can then be applied
to find a linear model of the typéX, ¢~);, [1]. Computation in finite time is ensured thanks to
finite dimensional representations [17]. Moreover, sifefeature map is normally chosen to be
nonlinear, a linear modélX, ¢);, in the feature space corresponds to a nonlinear functighiof
the original input spaci?.

For tensors, our proposal to go beyond linearity correspdadepresenting a tensé as a in-
finite dimensional operatob z in the same spirit of the traditional kernel formalism whefes
represented by . This requires the definition of an appropriate mapping epgh as well as the
existence of finite dimensional representationsXor— which is now infinite dimensional — in
the linear mode(X, ®z). In the following we begin by characterizing the featurecgpaf infinite
dimensionalN —th order tensors to whictkz and X’ belong. Successively, we present a possible
operatorial representation. We conclude with remarks eoricg finite representations and convex-

ity.
3.1 Tensor Product of Hilbert Spaces

Assume Hilbert spaces (HS&b1, (-, )5, ), (D2, )92)s---5 (9N, (-, )on)- A space of infinite
dimensionalV —th order tensors can be constructed as follows. We recali/tha; x o x --- x
Hn — Ris a bounded (equivalently continuous) multilinear fuactl [8], if it is linear in each
argument and there existsz [0, co) such thati(hy, he, ..., hAn)| < cllhills,l|R2llgs - |h2llon
forall h; € 9;,7 € Ny. Itis said to beHilbert-Schmidt if it further satisfies

Z Z Z |1/)(€1,€2,...,6N)|2<OO
e1E€EE] e2EC, en€CN

for one (equivalently each) orthonormal bagjof §;, i € My . It can be shown that the collections
of such well behaved Hilbert-Schmidt functionals endowétth the inner product

<1/};€>HSF = Z Z Z 1/}(@1,62,...,eN)g(el,eg,...,eN)

e1€C] ea €y eNECN

forms a HS. In particular, any bilinear functional assasigto aN —tuple (hy, he, ..., hy) € H1 X
o X --- x H and defined by

Uiy hayhn (F1s f2o oo IN) = (Ray f1) g0 (hes f2) s, - (s IN) o (4)

belongs to such a space and we have that

(Vhi,hoseoshins Vg1,ga gy VHSE = (h1, 91) 1, (P2, G2) 4, - (AN GN) Hy - 5)

2\We are considering here the most general case associatetstémce, to the popular RBF Gaussian kernel.



--------- Figure 1: A diagram illustrating the oper-
atorial representation for the second order
b2 case. The operatdrz € H; ® H, is the
A feature representation of the input pattern
R(ZI)CR> % H»  z e RN @R:. With I}, we denoted the
ry adjoint ofT'y,.

Starting from (4) we now let

hi®@ho- - @ hN = Vhy ho,. . hn (6)
and define the tensor product spate® H, ® - - - ® Hy as the completion of the linear span

span{h1®h2®---®hN : h; € H;, ’L'GNN} .
A finite-rank elemengt’ of this space admit a representation in terms of a finite numilod rank-1
terms (6): _ _ _
X=3 W, @n, e, 7)
JEN,

and can be envisioned as the infinite dimensional analogtieedfaditional finite-rank tensors of
previous section. If noWw = >, g, ® g7, -~ ® g7, it follows from (5) that the inner product
betweenY and), denoted bYX', V)1, o 1o ®--0H IS diven by

<Xa y>H1®H2®“'®HN = Z Z <hglvg:1>H1 <h527g:2>7'l2 to <h{NvngN>'HN .

jeNy reNg

We further have thatX ||y, ere- ey = VX, X) 1ot oy -

Finally we stress that the present notion of tensor produatilsl not be confounded with the one
introduced in the context agplines[17],[4] and giving rise to functional ANOVA models [7]. Iié
latter case a tensor product formalism is used as a way ofidgfinultivariate functions starting
from univariate ones. Object in their tensor product spaeeteen functions of the typg : R? —

R rather than operators, as in the present setting. A deepkrdbthe relation between the two
constructions can be found in [12, Chapter 1.5].

3.2 Operatorial Representations

(a) A19 x 18 grayscale im-
age Z of a character taken
from a natural scene.

(b) Its 190 x 171 feature representatichz .

Figure 2: AnimageZ (a) and its finite dimensional operatorial representatignb) [14]. Here we
used2—degree polynomial feature maps to generate the mode openat®).

Given the operatorial feature space sketched above it rent@idefine an appropriate feature repre-
sentation® > associated to a generic pattefnc Rt @ R2 @ - -- @ R~ . Here we follow [14] and
restrict ourselves to the case of second order tensors.eHea@ssume that we have input patterns
represented as matric€€ ")} .cn,, € R™* @ R’z . The general case can be treated based upon the
higher order analogues of the SVD [6]. Recall that the thirDS}¢composition ofZ € Rt @ Rz

can be written as
Z=) alicV (8)
1€N,.
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whereoy > o9 > -+ > 0y > 0py1 = -0 = Omin {1,,1,} = 0 are the ordered singular values and

U; ® V; are rank-1 matrices that represent the finite dimensioralgkorder analogue of (6). Let

¢1 : Rt — Hy andes : R2 — H, be some feature maps in the standard sense of kernel methods.
Based upor{U;},.y, and{V;},. we introduce thenode-0 operator’y; : H; — R’ and the

mode-1 operatol’y : H, — R’z defined, respectively, by

Tyh = Z ($1(U;), )3, U; and T'yh = Z (P2(Us), h)w, Vi . 9)

1€EN,. i€N,

LetI'y ® I'y denotes the infinite dimensional analogue of the Kroneckatyrct between matrices.
We define the operatorial representatiorZgfdenoted a® z, by

b, = argmin{H\I/Z||§_tl®H2 T ely)Vz=2Z, Yz eH ®H2} . (10)

This way Z is associated to the unique minimum norm solution of an dpaedequation. Details
can be found in [14]. A diagram illustrating this idea is refed on Figure 1. On Figure 2 we show
the (finite dimensional) feature representation obtainethie case wherg; and¢- are polynomial
feature maps.

3.3 Conclusions: Finite Dimensional Kernel Representationsand Practical Estimation

The generalized tensor-based framework that arise fronfietiteire representation in (10) aims at
combining the flexibility of kernel methods with the capitiibf exploiting structural information
typical of tensor-based data analysis. The idea can be mgiged into practical problem formu-
lations [14] thanks to finite dimensional representatidithie operatorial models. This is achieved
via extensions of the classical Representer Theorem [ITfpritlinately the current parametrization
leads to non-convex optimization problems. Obtaining esxrmultilinear formulations within this
framework is the subject of ongoing research.
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